The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned devic...
The incorporation of interface passivation structures in ultrathin Cu(In,Ga)Se2 based solar cells is shown. The fabrication used an industry scalable lithography technique—nanoimprint lithography (NIL)—for a 15 × 15 cm2 dielectric layer patterning. Devices with a NIL nanopatterned dielectric layer are benchmarked against electron-beam lithography (EBL) patterning, using rigid substrates. The NIL patterned devic...
A novel architecture that comprises rear interface passivation and increased rear optical reflection is presented with the following advantages: i) an enhanced optical reflection is achieved by depositing a metallic layer over the Mo rear contact; ii) the addition of a sputtered Al2O3 layer improves the interface quality with CIGS; and, iii) the rear-openings are refilled with Mo to maintain the optimal ohmic e...
Currently, one of the main limitations in ultrathin Cu(In,Ga)Se2 (CIGS) solar cells are the optical losses, since the absorber layer is thinner than the light optical path. Hence, light management, including rear optical reflection and light trapping is needed. In this work we focus on increasing the rear optical reflection. For this, a novel structure based on having a metal interlayer in between the Mo rear c...