In the last few years, several strategies have been proposed to fabricate scaffolds for tissue engineering (TE) applications; however, they are based on harsh and timeâ consuming techniques. The choice for natural polymers such as cashew gum (CG) allows to circumvent the demands of biocompatibility and degradability of TE systems. In this work, CG, a polysaccharide derived from Anacardium occidentale trees, is ...
Chemical modifications to cashew gum (CG) structure have been previously reported to obtain new physicochemical characteristics, however until now there were no reports of modifications by introduction of new functional groups to add cationic character. This study presents a quaternization route for CG using a quaternary ammonium reagent. The chemical features of the quaternized cashew gum derivatives (QCG) wer...
Cashew gum (CG), an exudate polysaccharide from Anacardium occidentale trees, was carboxymethylated (CGCm) and oxidized (CGO). These derivatives were characterized by FTIR and zeta potential measurements confirming the success of carboxymethylation and oxidation reactions. Nanostructured multilayered films were then produced through layer-by-layer (LbL) assembly in conjugation with chitosan via electrostatic in...
Chemical modifications to cashew gum (CG) structure have been previously reported to obtain new physicochemical characteristics, however until now there were no reports of modifications by intro-duction of new functional groups to add cationic character. This study presents a quaternization route for CG using a quaternary ammonium reagent. The chemical features of the quaternized cashew gum derivatives (QCG) were...