Developing innovative approaches to target osteomyelitis caused by polymicrobial infections remains a significant therapeutic challenge. In this study, monodispersed chitosan nanoparticles co-loaded with antibacterial (minocycline) and antifungal (voriconazole) agents were successfully prepared. Minocycline presented higher encapsulation efficiency as compared to voriconazole. Thermostability analysis suggested...
New strategies for the treatment of polymicrobial bone infections are required. In this study, the co-delivery of two antimicrobials by poly(D,L-lactic acid) (PDLLA) scaffolds was investigated in a polymicrobial biofilm model. PDLLA scaffolds were prepared by solvent casting/particulate leaching methodology, incorporating minocycline and voriconazole as clinically relevant antimicrobial agents. The scaffolds pr...
Bone infection treatment is a clinical challenge, often complicated by simultaneous polymicrobial infections. A growing number of studies address the co-isolation of fungal and bacterial species, such as Candida albicans and Staphylococcus aureus, from polymicrobial biofilm associated with osteomyelitis. Recent publications demonstrate that scaffolds with local drug delivery ability, display high antimicrobial ...
An innovative delivery system based on bacteriophages-loaded alginate-nanohydroxyapatite hydrogel was developed as a multifunctional approach for local tissue regeneration and infection prevention and control. Bacteriophages were efficiently encapsulated, without jeopardizing phage viability and functionality, nor affecting hydrogel morphology and chemical composition. Bacteriophage delivery occurred by swellin...
Candida can adhere and form biofilm on biomaterials commonly used in medical devices which is a key attribute that enhances its ability to cause infections in humans. Furthermore, biomaterial-related infections represent a major therapeutic challenge since Candida biofilms are implicated in antifungal therapies failure. The goals of the present work were to investigate the effect of three 5-aminoimidazole-4-car...
Ceramic/polymer-based biocomposites have emerged as potential biomaterials to fill, replace, repair or regenerate injured or diseased bone, due to their outstanding features in terms of biocompatibility, bioactivity, injectability, and biodegradability. However, these properties can be dependent on the amount of ceramic component present in the polymer-based composite. Therefore, in the present study, the influ...
In this work three different hydrogels were developed to associate, as vehicles, with the synthetic bone substitute GR-HA. One based on an alginate matrix (Alg); a second on a mixture of alginate and chitosan (Alg/Ch); and a third on alginate and hyaluronate (Alg/HA), using Ca2+ ions as cross-linking agents. The hydrogels, as well as the respective injectable bone substitutes (IBSs), were fully characterized fr...
http://www.sciencedirect.com/science/article/B7GHW-4VNH426-1/2/25280834eb9207195153bdacda7196e8