While designing an end-effector tool for a specific task using an already available robotic arm is a common strategy for developing robot-based solutions, it is subject to the designer's subjective biases, especially in the medical robotics field. Consequently, this approach can result in suboptimal solutions that may limit the performance of the robotic arm and the overall system. This work introduces a novel ...
Medical image segmentation is a paramount task for several clinical applications, namely for the diagnosis of pathologies, for treatment planning, and for aiding image-guided surgeries. With the development of deep learning, Convolutional Neural Networks (CNN) have become the state-of-the-art for medical image segmentation. However, issues are still raised concerning the precise object boundary delineation, sin...
Breast cancer is a global public health concern. For women with suspicious breast lesions, the current diagnosis requires a biopsy, which is usually guided by ultrasound (US). However, this process is challenging due to the low quality of the US image and the complexity of dealing with the US probe and the surgical needle simultaneously, making it largely reliant on the surgeon's expertise. Some previous works ...
Evaluation of the head shape of newborns is needed to detect cranial deformities, disturbances in head growth, and consequently, to predict short- and long-term neurodevelopment. Currently, there is a lack of automatic tools to provide a detailed evaluation of the head shape. Artificial intelligence (AI) methods, namely deep learning (DL), can be explored to develop fast and automatic approaches for shape evalu...
Cephalometric analysis is an important and routine task in the medical field to assess craniofacial development and to diagnose cranial deformities and midline facial abnormalities. The advance of 3D digital techniques potentiated the development of 3D cephalometry, which includes the localization of cephalometric landmarks in the 3D models. However, manual labeling is still applied, being a tedious and time-co...
Background and objective: Examination of head shape and brain during the fetal period is paramount to evaluate head growth, predict neurodevelopment, and to diagnose fetal abnormalities. Prenatal ultrasound is the most used imaging modality to perform this evaluation. However, manual interpretation of these images is challenging and thus, image processing methods to aid this task have been proposed in the liter...
Automatic lesion segmentation in breast ultrasound (BUS) images aids in the diagnosis of breast cancer, the most common type of cancer in women. Accurate lesion segmentation in ultrasound images is a challenging task due to speckle noise, artifacts, shadows, and lesion variability in size and shape. Recently, convolutional neural networks have demonstrated impressive results in medical image segmentation tasks....
Landmark labeling in 3D head surfaces is an important and routine task in clinical practice to evaluate head shape, namely to analyze cranial deformities or growth evolution. However, manual labeling is still applied, being a tedious and time-consuming task, highly prone to intra-/inter-observer variability, and can mislead the diagnose. Thus, automatic methods for anthropometric landmark detection in 3D models...
Renal ultrasound imaging is the primary imaging modality for the assessment of the kidney’s condition and is essential for diagnosis, treatment and surgical intervention planning, and follow-up. In this regard, kidney delineation in three-dimensional ultrasound images represents a relevant and challenging task in clinical practice. In this paper, a novel framework is proposed to accurately segment the kidney in...
Purpose Electromagnetic tracking systems (EMTSs) have been proposed to assist the percutaneous renal access (PRA) during minimally invasive interventions to the renal system. However, the influence of other surgical instruments widely used during PRA (like ureteroscopy and ultrasound equipment) in the EMTS performance is not completely known. This work performs this assessment for two EMTSs [Aurora (R) Planar F...