We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies...
AWAKE is a proton-driven plasma wakefield acceleration experiment. We show that the experimental setup briefly described here is ready for systematic study of the seeded selfmodulation of the 400 GeV proton bunch in the 10 m long rubidium plasma with density adjustable from 1 to 10 × 1014 cm-3. We show that the short laser pulse used for ionization of the rubidium vapor propagates all the way along the column, ...
Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations pr...
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and...
New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited ...
Contemporary high-power laser systems make use of solid-state laser technology to reach petawatt pulse powers. The breakdown threshold for optical components in these systems, however, demands beam diameters up to 1 m. Raman amplification of laser beams promises a breakthrough by the use of much smaller amplifying media, i.e., millimeter-diameter-wide plasmas. Through the first large-scale multidimensional part...