6 documents found, page 1 of 1

Sort by Issue Date

Characterization of decavanadate and decaniobate solutions by Raman spectroscopy

Aureliano, Manuel; Ohlin, C. André; Vieira, Michele O.; Marques, M. Paula M.; Casey, William H.; Carvalho, Luís A. E. Batista de

The decaniobate ion, (Nb10 = [Nb10O28](6-)) being isoelectronic and isostructural with the decavanadate ion (V10 = [V10O28](6-)), but chemically and electrochemically more inert, has been useful in advancing the understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V1...


Characterization of decavanadate and decaniobate solutions by Raman spectroscopy

Aureliano, M.; Ohlin, C. André; Vieira, Michele O.; Marques, M. Paula M.; Casey, William H.; Batista de Carvalho, Luís A. E.

The decaniobate ion, (Nb10 = [Nb10O28]6−) being isoelectronic and isostructural with the decavanadate ion (V10 = [V10O28]6−), but chemically and electrochemically more inert, has been useful in advancing the understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V10 sh...


Decavanadate in vitro and in vivo effects: facts and opinions

Aureliano, M.; Ohlin, C. André

This review covers recent advances in the understanding of the in vitro and in vivo effects of decavanadate, (V10O28)6 −, particularly in mitochondria. In vivo toxicological studies involving vanadium rarely account for the fact that under physiological conditions some vanadium may be present in the form of the decavanadate ion, which may behave differently from ortho- and metavanadates. It has for example been...


Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasm...

Fraqueza, Gil; Carvalho, Luís A. E. Batista de; Marques, M. Paula M.; Maia, Luisa; Ohlin, C. André; Casey, William H.; Aureliano, Manuel

Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium transloc...


Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasm...

Fraqueza, Gil; Carvalho, Luís A. E. Batista de; Marques, M. Paula M.; Maia, Luisa; Ohlin, C. André; Casey, William H.; Aureliano, M.

Recently we demonstrated that the decavanadate (V10) ion is a stronger Ca2+-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V10 interaction is not affected by any of the protein conformations that occur during the process of calcium translocation ...


Sarcoplasmic reticulum calcium ATPase interactions with decaniobate, decavanada...

Fraqueza, Gil; Ohlin, C. André; Casey, William H.; Aureliano, M.

Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if bio...


6 Results

Queried text

Refine Results

Author











Date




Document Type


Access rights



Resource



Subject