Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels—self-assembled networks of fibrils able to trap water molecules. Typically, these hydrogelators can form stiff gels at concentrations of 0.1 to 1.0 wt%—i.e. they consist of mainly water. The properties of these soft materials mimic those of the extracellular matrix (ECM) of biological tissue and therefor...
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported ...
Employing amino acids and peptides as molecular building blocks provides unique opportunities for generating supramolecular hydrogels, owing to their inherent biological origin, bioactivity, biocompatibility, and biodegradability. However, they can suffer from proteolytic degradation. Ultrashort peptides (< 8 amino acids) attached to an aromatic capping group are particularly attractive alternatives as minimali...