Aquaculture exploitation is associated with the consumption of antibiotics, such as sulfadiazine (SDZ), sulfamethoxazole (SMX) and trimethoprim (TMP), the latter two being also vastly used to treat bacterial infections in humans. Consequently, and given that aquaculture wastewater treatments are not actually designed for the removal of antibiotics, they are ubiquitous in aquaculture effluents, which sets the ri...
Contamination of surrounding waters with antibiotics by aquaculture effluents can be problematic due to the possible increase of bacterial resistance, making it crucial the efficient treatment of those effluents before their release into the environment. In this work, the application of waste-based magnetic biochar/titanium dioxide (BC/TiO2) composite materials on the photodegradation of two antibiotics widely ...
In view of a simple after-use separation, the potentiality of producing magnetic activated carbon (MAC) by intercalation of ferromagnetic metal oxide nanoparticles in the framework of a powder activated carbon (PAC) produced from primary paper sludge was explored in this work. The synthesis conditions to produce cost effective and efficient MACs for the adsorptive removal of pharmaceuticals (amoxicillin, carbam...
This work aimed at the microwave-assisted production of activated carbon (AC) from primary paper mill sludge (PS) for the adsorption of antibiotics from water. Production conditions, namely pyrolysis temperature, pyrolysis time and activating agent (KOH):PS ratio, were optimized as a function of product yield, specific surface area (SBET), total organic carbon (TOC) content and adsorptive removal percentage of ...
This work aimed at producing easily recoverable magnetic iron-oxide functionalized activated carbons (AC) through environmentally and energetically sustainable methods, evaluating their efficacy towards the removal of the pharmaceuticals diclofenac (DCF) and venlafaxine (VEN) from different aqueous matrices (ultrapure water and wastewater treatment plant effluents). Two AC were prepared by chemical activation o...
In view of the valorisation of the green microalga Scenedesmus obliquus biomass, it was used for the biosorption of two nonsteroidal anti-inflammatory drugs, namely salicylic acid and ibuprofen, from water. Microalgae biomass was characterized, namely by the determination of the point of zero charge (pHPZC), by Fourier transform infrared (FT-IR) analysis, simultaneous thermal analysis (STA) and scanning electro...
An activated carbon was produced from paper mill sludge (AC-P) and functionalized with thiol groups (AC-MPTMS) for the adsorptive removal of the antibiotic sulfamethoxazole (SMX) from buffered solutions prepared in ultrapure water (pH 8) and real wastewater samples. The physicochemical properties of the two materials (AC-P and AC-MPTMS) showed differences, mainly in specific surface area (SBET), in the type of ...
The adsorption of pharmaceutical substances using carbonaceous materials, such as activated carbon (AC), biochar (BC) and hydrochar (HC), has received substantial attention by researchers working on water treatment, due to the simplicity, low-cost and high performance of this process. In order to widen the potentiality of these carbonaceous materials and to overcome some of their limitations, particularly the i...
The presence of pharmaceuticals, which are considered as contaminants of emerging concern, in natural waters is currently recognized as a widespread problem. Monitoring these contaminants in the environment has been an important field of research since their presence can affect the ecosystems even at very low levels. Several analytical techniques have been developed to detect and quantify trace concentrations o...
The presence of antibiotics, such as sulfadiazine (SDZ), in the aquatic environment contributes to the generation of antimicrobial resistance, which is a matter of great concern. Photolysis is known to be a major degradation pathway for SDZ in surface waters. Therefore, influencing factors affecting SDZ photodegradation in different aquatic environments were here eval...