Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and m...
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and m...
Albatrosses are the iconic aerial wanderers of the oceans, supremely adapted for long-distance dynamic soaring flight. Perhaps because of this they are considered poorly adapted for diving1, in contrast to many smaller shearwater and petrel relatives, despite having amphibious eyes2, and an a priori mass advantage for oxygen-storage tolerance3. Modern biologging studies have largely confirmed this view4,5, cast...
Albatrosses are the iconic aerial wanderers of the oceans, supremely adapted for long-distance dynamic soaring flight. Perhaps because of this they are considered poorly adapted for diving1, in contrast to many smaller shearwater and petrel relatives, despite having amphibious eyes2, and an a priori mass advantage for oxygen-storage tolerance3. Modern biologging studies have largely confirmed this view4,5, cast...
Seabirds must often travel vast distances to exploit heterogeneously distributed oceanic resources, but how routes and destinations of foraging trips are optimized remains poorly understood. Among the seabirds, gadfly petrels (Pterodroma spp.) are supremely adapted for making efficient use of wind energy in dynamic soaring flight. We used GPS tracking data to investigate the role of wind in the flight behaviour...
Seabirds must often travel vast distances to exploit heterogeneously distributed oceanic resources, but how routes and destinations of foraging trips are optimized remains poorly understood. Among the seabirds, gadfly petrels (Pterodroma spp.) are supremely adapted for making efficient use of wind energy in dynamic soaring flight. We used GPS tracking data to investigate the role of wind in the flight behaviour...
Knowing the spatial scales at which effective management can be implemented is fundamental for conservation planning. This is especially important for mobile species, which can be exposed to threats across large areas, but the space use requirements of different species can vary to an extent that might render some management approaches inefficient. Here the space use patterns of seabirds were examined to provid...