The developed research presents a novel experimental study of the cost-effective MgO-Al2O3, MgO-CaZrO3 perovskite, and thermally stable YSZ ceramic composites for DBD plasma actuators in aerospace applications. This study focuses on the implementation of ceramic DBD plasma actuators for aerodynamic flow control and ice creation mitigation. For this purpose, electrical power consumption analysis, induced flow ve...
Cold climate regions have great potential for wind power generation. The available wind energy in these regions is about 10% higher than in other regions due to higher wind speeds and increased air density. However, these regions usually have favorable icing conditions that lead to ice accumulation on the wind turbine blades, which in turn increases the weight of the blades and disrupts local airflow, resulting...
The main purpose of this paper is to study fuel cell performance using an interdigitated flow field with intermediate channel blocks on the cathode side. Application of an intermediate block in the middle of the interdigitated flow channel is a very new idea aimed at increasing the performance of polymer membrane fuel cells, which in practice result in novel arrangements of interdigitated flow channels. A middl...
Ice accretion is a common issue on aircraft flying in cold climate conditions. The ice accumulation on aircraft surfaces disturbs the adjacent airflow field, increases the drag, and significantly reduces the aircraft’s aerodynamic performance. It also increases the weight of the aircraft and causes the failure of critical components in some situations, leading to premature aerodynamic stall and loss of control ...
Dielectric barrier discharge (DBD) plasma actuators are simple electrohydrodynamic devices, which are able to provide effective aerodynamic control. One of the main components of these devices is the thin dielectric layer, which allows to separate and prevent the arc between the high-voltage electrodes. Different materials can be used as dielectric layer to reduce the power consumption or boost the flow control...