This paper introduces a Fractal Patch Antenna (FPA) integrated with Photonic Crystals (PhC) designed for Intelligent Transportation Systems (ITS) in the Millimeter-wave bands (mmWaves) given the importance of the application of mmWaves in Vehicle-to-Everything (V2X) networks, we assumed, as examples, that the antenna is designed to resonate at three frequency bands: 31.42 GHz, 37.76 GHz, and 38.92 GHz. With a g...
Extended reality (XR) is bridging the gap between virtual and real-world interactions enabling users to interact in realistic virtual worlds, removing physical obstacles, and establishing shared areas that promote greater comprehension and teamwork. The growing demand for high-frequency 5G communication systems supporting these new applications motivates the need of compact and efficient antennas capable of ope...
Central to this study is the introduction of a pioneering photonic crystal-based microstrip patch antenna array with high gain. Engineered to meet the demands of evolving wireless communication technologies, this novel antenna system leverages Photonic Band Gap (PBG) structures. A fractal microstrip patch antenna, operating within the E-W-F band, is designed and simulated using the High-Frequency Structure Simu...
This work shows how both frequency and the election of path loss model affect estimated spectral efficiency. Six different frequency bands are considered, ranging from 2.6 GHz in the Ultra High Frequency (UHF) band to 73 GHz in the millimetre wave bands (mmWaves), using both single-slope and two-slope path-loss models. We start by comparing four ur ban path loss models for UHF: the urban/vehicular and pedestria...
This article discusses the benefit-cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band (from the ITU-R 2135 Report) and the modified Friis prop...
This work aims at understanding and evaluating the impact of using different path loss models in the optimization trade-off of small cell (SC) networks. In LTE-A, the more realistic propagation models are the more efficient the radio and network optimization becomes. In this work we compare four urban path loss models: the urban/vehicular and pedestrian test environment from the ITU-R M. 1255 Report as well as ...
This work evaluates the impact of different path loss models on capacity of small cell (SC) networks, including the relationship between cell size and capacity. We compare four urban path loss models: the urban/vehicular and pedestrian test environment from the ITU-R M. 1255 Report, and the two-slope Micro Urban Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) models from the ITU-R 2135 Report. We show that whe...