We show experimentally that an effect of motion of ions, observed in a plasma-based accelerator, depends inversely on the plasma ion mass. The effect appears within a single wakefield event and manifests itself as a bunch tail, occurring only when sufficient motion of ions suppresses wakefields. Wakefields are driven resonantly by multiple bunches, and simulation results indicate that the ponderomotive force ca...
We show in experiments that a long, underdense, relativistic proton bunch propagating in plasma undergoes the oblique instability, which we observe as filamentation. We determine a threshold value for the ratio between the bunch transverse size and plasma skin depth for the instability to occur. At the threshold, the outcome of the experiment alternates between filamentation and self-modulation instability (evi...
We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1×10^14 and 7.7×10^14 electrons/cm^3. We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time...
We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bu...
AWAKE is a proton-driven plasma wakefield acceleration experiment. We show that the experimental setup briefly described here is ready for systematic study of the seeded selfmodulation of the 400 GeV proton bunch in the 10 m long rubidium plasma with density adjustable from 1 to 10 × 1014 cm-3. We show that the short laser pulse used for ionization of the rubidium vapor propagates all the way along the column, ...
High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so cal...