This paper presents a decision support methodology for electricity market players’bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity ma...
We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the ...
Most machining tasks require high accuracy and are carried out by dedicated machine-tools. On the other hand, traditional robots are flexible and easy to program, but they are rather inaccurate for certain tasks. Parallel kinematic robots could combine the accuracy and flexibility that are usually needed in machining operations. Achieving this goal requires proper design of the parallel robot. In this chapter, ...
This paper addresses the problem of finding several different solutions with the same optimum performance in single objective real-world engineering problems. In this paper a parallel robot design is proposed. Thereby, this paper presents a genetic algorithm to optimize uni-objective problems with an infinite number of optimal solutions. The algorithm uses the maximin concept and ε-dominance to promote diversit...
This paper addresses the problem of finding several different solutions with the same optimum performance in single objective real-world engineering problems. In this paper a parallel robot design was proposed. Thereby, this paper presents a genetic algorithm to optimize uni-objective problems with an infinite number of optimal solutions. The algorithm uses the maximin concept and -dominance to promote diversit...
This paper proposes a method, based on a genetic algorithm, to generate smoth manipulator trajectories in a multi-objective perspective. The method uses terms proportional to the integral of the squared displacements in order to eliminate the jerk movement. In this work, the algorithm, based on NSGA-II and maximin sorting schemes, considers manipulators of two, three and four rotational axis (2R, 3R, 4R). The e...
This paper presents a genetic algorithm to optimize uni-objective problems with an infinite number of optimal solutions. The algorithm uses the maximin concept and -dominance to promote diversity over the admissible space. The proposed algorithm is tested with two well-known functions. The practical results of the algorithm are in good agreement with the optimal solutions of these functions. Moreover, the propo...
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Ala...
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected pe...