Currently, there is an increasing need to develop highly sensitive plasmonic sensors able to provide good biocompatibility, flexibility, and optical stability to detect low levels of analytes in biological media. In this study, gold nanoparticles (Au NPs) were dispersed into chitosan membranes by spin coating. It has been demonstrated that these membranes are particularly stable and can be successfully employed...
In this work, a versatile method is proposed to increase the sensitivity of optical sensors based on the localized surface plasmon resonance (LSPR) phenomenon. It combines a physical deposition method with the oblique angle deposition technique, allowing the preparation of plasmonic thin films with tailored porosity. Thin films of Au-TiO2 were deposited by reactive magnetron sputtering in a 3D nanostructure (zi...
Nanocomposite thin films, composed of monometallic Au and Ag, and bimetallic AuAg nanoparticles, dispersed in a CuO matrix were prepared, characterised and tested for Localized Surface Plasmon Resonance (LSPR) sensing. The films were deposited by reactive magnetron sputtering, followed by a post-deposition thermal annealing to modify the size and shape of the nanoparticles distribution within the oxide matrix. ...
Thin films containing monometallic (Ag,Au) and bimetallic (Ag-Au) noble nanoparticles were dispersed in TiO2, using reactive magnetron sputtering and post-deposition thermal annealing. The influence of metal concentration and thermal annealing in the (micro)structural evolution of the films was studied, and its correlation with the localized surface plasmon resonance (LSPR) and surface enhanced Raman spectrosco...
Nanocomposite thin films, with noble nanoparticles dispersed in a dielectric matrix, are known to present unique optical properties. Based on the Localized Surface Plasmon Resonance (LSPR) phenomenon, these "nanoplasmonic" materials are the basis of a wide range of technological applications, namely (bio)molecular LSPR-sensors. They are regulated by the concentration, size, shape and distribution of the nanopar...
Nanocomposite thin films, containing Au nanoparticles dispersed in a CuO matrix, were prepared by reactive DC magnetron sputtering and post-deposition thermal annealing. The CuO matrix was found to be stoichiometric and the atomic concentration of Au was determined to be about 12.3 at.%. After the annealing process, the average size of the crystalline domains of the Au nanoparticles (fcc structure) increased fr...
Filmes finos nanocompósitos, constituídos por nanopartículas nobres incorporadas numa matriz de oxido metálico, têm despertado considerável interesse na deteção ótica de moléculas gasosas. A sensibilidade dos filmes pode ser otimizada de acordo com o efeito de ressonância de plasmões de superfície localizados (LSPR) revelado por estes materiais, que depende fortemente da composição, distribuição, tamanho e form...