7 pages, 6 figures; Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from multiply interacting massive particles (MIMPs). Their unique track signature allows a targeted analysis with o...
A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal 37Ar source was performed. This calibration source features a 35-day half-life and provides two monoenergetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keVare measured to be (32.3±0.3) photons/keV and (40.6 ± 0.5) electrons/keV, respectively, in agreement with oth...
We correct an overestimation of the production rate of 137Xe in the DARWIN detector operated at LNGS. This formerly dominant intrinsic background source is now at a level similar to the irreducible background from solar 8B neutrinos, thus unproblematic at the LNGS depth. The projected half-life sensitivity for the neutrinoless double beta decay (0νββ) of 136Xe improves by 22% compared to the previously reported...
Limit points are included in the submission file; We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment, which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of 5.9 ton. During the (1.09±0.03) ton yr exposure used for this search, the intrinsic ^{85}Kr and ^{222}Rn concentrat...
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon timeprojection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinol...
Made available in DSpace on 2022-04-29T07:28:37Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-02-12; We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132...
Made available in DSpace on 2022-04-29T07:30:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-02-17; National Science Foundation; We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and conc...
Made available in DSpace on 2022-04-29T07:31:24Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-02-25; In this paper we present the results of the first low frequency all-sky search of continuous gravitational wave signals conducted on Virgo VSR2 and VSR4 data. The search covered the full sky, a frequency range between 20 and 128 Hz with a range of spin-down between -1.0×10-10 and +1.5×10-11 Hz/s, and wa...
Made available in DSpace on 2022-04-29T07:32:47Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-03-31; Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23/Hz at 100 Hz, the product of observable volume and measurement time exceede...
Made available in DSpace on 2022-04-29T07:34:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-03-31; The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses 30M, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, cre...