Chitosan, a natural and abundant biopolymer has been long explored as a biocompatible material for the preparation of drug delivery devices. This strategy has been mostly accomplished using chemically crosslinked chitosan leading to more stable scaffolds. However, crosslinking has been shown to reduce both biocompatibility and swelling. In this work chitosan was crosslinked with novel biocompatible crosslinkers...
Pulmonary administration offers excellent advantages over conventional drug delivery routes, including increasing therapeutics bioavailability, and avoiding long‐term safety issues. Formulations of nano‐in‐micro dry powders for lung delivery are engineered using (S)‐ibuprofen as a model drug. These biodegradable formulations comprise nanoparticles of drug‐loaded POxylated polyurea dendrimers coated with chitosa...
The design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are ‘smart’ biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, t...
Biocompatible and biodegradable water‐soluble dendrimers comprising ureas within the interior and amino groups on the periphery were synthesized in supercritical carbon dioxide (dendrimer of generation 1 shown in picture). This novel class of dendrimers shows a pH‐dependent intrinsic blue fluorescence at very low concentrations, which makes them potential polymeric fluorescent cell markers.