Silk sericin (SS), a by-product of the textile industry, has gained significant attention for its biomedical potential due to its biocompatibility and regenerative potential. However, the literature lacks information on SS processing methods and the resulting physicochemical properties. This study represents the first step in protocol optimization and standardization. In the present work, different processing t...
Aerogels from natural polymers are endowed with attractive textural and biological properties for biomedical applications due to their high open mesoporosity, low density, and reduced toxicity. Nevertheless, the lack of macroporosity in the aerogel structure and of a sterilization method suitable for these materials restrict their use for regenerative medicine purposes and prompt the research on getting ready-t...
The increasing complexity in morphology and composition of modern biomedical materials (e.g., soft and hard biological tissues, synthetic and natural‐based scaffolds, technical textiles) and the high sensitivity to the processing environment requires the development of innovative but benign technologies for processing and treatment. This scenario is particularly applicable where current conventional techniques ...