Genome scale metabolic models (GEMs) and other constraint-based models (CBMs) play a pivotal role in understanding biological phenotypes and advancing research in areas like metabolic engineering, human disease modelling, drug discovery, and personalized medicine. Despite their growing application, a significant challenge remains in ensuring the reproducibility of GEMs, primarily due to inconsistent reporting a...
Reconstructing metabolic reaction networks enables the development of testable hypotheses of an organisms metabolism under different conditions1. State-of-the-art genome-scale metabolic models (GEMs) can include thousands of metabolites and reactions that are assigned to subcellular locations. Geneproteinreaction (GPR) rules and annotations using database information can add meta-information to GEMs. GEMs with ...
The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly ...
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Bio-catalytic processes for sustainable production of chemicals and fuels receive increased attention within the concept of circular economy. Strategies to improve these production processes include genetic engineering of bio-catalysts or process technological optimization. Alternatively, synthetic microbial co-cultures can be used to enhance production of chemicals of interest. It remains often unclear however...
Nowadays, large amounts of waste glycerol are generated as a major byproduct from biodiesel industry. Glycerol can be converted to 1,3-propanediol (1,3-PDO), a building block for the synthesis of polyester and biodegradable plastic fibers. We have previously isolated a novel Trichococcus species, strain ES5, which is capable to anaerobically produce 1,3-PDO from glycerol, an ability it shares with Trichococcus ...
Haloalkanoates are environmental pollutants that can be degraded aerobically by microorganisms producing hydrolytic dehalogenases. However, there is a lack of information about the anaerobic degradation of haloalkanoates. Genome analysis of Pseudomonas chloritidismutans AW-1T, a facultative anaerobic chloratereducing bacterium, showed the presence of two putative haloacid dehalogenase genes, the L-DEX gene and ...
Species of the genus Trichococcus share high similarity of their 16S rRNA gene sequences (>99%). Digital DNADNA hybridization values (dDDH) among type strains of all described species of the genus Trichococcus ( T. flocculiformis DSM 2094T , T. pasteurii DSM 2381T , T. collinsii DSM 14526T , T. palustris DSM 9172T, and T. patagoniensis DSM 18806T) indicated that Trichococcus sp. strain R210T represents a novel ...
The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2, and use a variety of sugars for acetogenic growth. Here we describe a genome analy...
Growth of Pseudomonas chloritidismutans AW-1T on C7 to C12 n-alkanes with oxygen or chlorate as electron acceptor was studied by genome and proteome analysis. Whole genome shotgun sequencing resulted in a 5 Mbp assembled sequence with a G+C content of 62.5% The automatic annotation identified 4767 protein-encoding genes and a putative function could be assigned to almost 80% of the predicted proteins. The disti...