Neural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is ...
One of the exciting prospects of using decellularized extracellular matrices (ECM) lies in their biochemical profile of preserved components, many of which are regeneration-permissive. Herein, a decellularized ECM from adipose tissue (adECM) was explored to design a scaffolding strategy for the challenging repair of the neural tissue. Targeting the recreation of the nano-scaled architecture of native ECM, adECM...
Electrospinning has been widely used to fabricate fibrous scaffolds for cartilage tissue engineering, but their small pores severely restrict cell infiltration, resulting in an uneven distribution of cells across the scaffold, particularly in three-dimensional designs. If bio-electrospraying is applied, direct chondrocyte incorporation into the fibers during electrospinning may be a solution. However, before th...
Electrospinning has been widely used to fabricate fibrous scaffolds for cartilage tissue engineering, but their small pores severely restrict cell infiltration, resulting in an uneven distribution of cells across the scaffold, particularly in three-dimensional designs. If bio-electrospraying is applied, direct chondrocyte incorporation into the fibres during electrospinning may be a solution. However, before th...
Due to the limited self-healing ability of natural cartilage, several tissue engineering strategies have been explored to develop functional replacements. Still, most of these approaches do not attempt to recreate in vitro the anisotropic organization of its extracellular matrix, which is essential for a suitable load-bearing function. In this work, different depth-dependent alignments of polycaprolactone-gelat...
Biomimetics offers excellent prospects for design a novel generation of improved biomaterials. Here the controlled integration of graphene oxide (GO) derivatives with a 3D marine spongin (MS) network is explored to nanoengineer novel smart bio-based constructs for bone tissue engineering. The results point out that 3D MS surfaces can be homogeneously coated by layer-by-layer (LbL) assembly of oppositely charged...
Designing and fabricating hierarchical geometries for tissue engineering (TE) applications is the major challenge and also the biggest opportunity of regenerative medicine in recent years, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical examples due to the current inefficient standard medical procedures and the lack of fabrication techniques capable of building sca...
Polycaprolactone (PCL) electrospun scaffolds have been widely investigated for cartilage repair application. However, their hydrophobicity and small pore size has been known to prevent cell attachment, proliferation and migration. Here, PCL was blended with gelatin (GEL) combining the favorable biological properties of GEL with the good mechanical performance of the former. Also, polyethylene glycol (PEG) parti...
Electrospun scaffolds have long been used for cartilage repair, due to the topographic similarity between the electrospun fibers and the collagen fibers of the extracellular matrix (ECM) in the native cartilage. Still, while their nanotophography can be beneficial for the cell proliferative and spreading behavior, it greatly reduces the inter-fiber pore size, hindering cell migration and relegating tissue forma...
Tissue engineering strategies create artificial substitutes for the regeneration of damaged tissues, beginning with the fabrication of scaffolds moving then to cell incorporation onto those scaffolds and subsequent tissue growth in vitro. Cell seeding techniques, unfortunately, are usually ineffective to develop scaffolds with homogenous cell distribution, resulting in non-functional tissue formation [1]. With ...