Proton exchange membrane water electrolysis (PEMWE) showes substantial advantages over the conventional alkaline water electrolysis (AWE) for power-to-hydrogen (PtH) conversion, given the faster response and wider dynamic current range of the PEMWE technology. However, PEMWE is currently still expensive due partly to the high voltage needed to operate at high current densities and inevitable usage of precious i...
Proton exchange membrane water electrolysis (PEMWE) showes substantial advantages over the conventional alkaline water electrolysis (AWE) for power-to-hydrogen (PtH) conversion, given the faster response and wider dynamic current range of the PEMWE technology. However, PEMWE is currently still expensive due partly to the high voltage needed to operate at high current densities and inevitable usage of precious i...
Direct seawater electrolysis is proposed as a potential low-cost approach to green hydrogen production, taking advantage of the vastly available seawater and large-scale offshore renewable energy being deployed. However, developing efficient, earth-abundant electrocatalysts that can survive under harsh corrosive conditions for a long time is still a significant technical challenge. Herein, the fabrication of a ...