The Aspergillus niger CexA transporter belongs to the DHA1 (Drug-H+ antiporter) family. CexA homologs are exclusively found in eukaryotic genomes, and CexA is the sole citrate exporter to have been functionally characterized in this family so far. In the present work, we expressed CexA in Saccharomyces cerevisiae, demonstrating its ability to bind isocitric acid, and import citrate at pH 5.5 with low affinity. ...
Pressure injuries (PIs) are a major public health problem and can be used as quality-of-care indicators. An incipient development in the field of medical devices takes the form of Smart Health Textiles, which can possess innovative properties such as thermoregulation, sensing, and antibacterial control. This protocol aims to describe the process for the development of a new type of smart clothing for individual...
The rising threats to the worldwide security (military and civilian) attest the need to develop efficient and versatile technological solutions to protect the human being [...]
The yeast <i>Cyberlindnera jadinii</i> has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of sixteen plasma membrane carboxylate transporters belonging to the AceTr, SHS, TDT, MCT, SSS, and DASS f...
In Saccharomyces cerevisiae, the complete set of proteins involved in transport of lactic acid across the cell membrane has not been determined. In this study we aimed to identify transport proteins not previously described to be involved in lactic acid transport via a combination of directed evolution, whole-genome resequencing and reverse engineering. Evolution of a strain lacking all known lactic acid transp...
Organic acids are recognized as versatile chemical compounds with a vast variety of applications in sectors ranging from food and beverages, pharmaceutical, personal care, cosmetic products, consumer goods to the chemical industry. Due to the strong demand for these compounds, alternative approaches to non-sustainable processes, e.g. chemical synthesis from petroleum derivatives, are being developed. Sustainabl...
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we perfo...
Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing enviro...
Opportunistic pathogens such as Candida species can use carboxylic acids, like acetate and lactate, to survive and successfully thrive in different environmental niches. These nonfermentable substrates are frequently the major carbon sources present in certain human body sites, and their efficient uptake by regulated plasma membrane transporters plays a critical role in such nutrient-limited conditions. Here, w...
Novel strategies to boost bio-based production of organic acids are focused in the expression of specific transporter proteins, to improve adequate uptake and export mechanisms. This study focused on the identification and characterization of novel carboxylate (CA) transporters in the yeast Cyberlindnera jadinii. Transporters homologous to Jen1p and Ady2p, the lactate and acetate permeases from Saccharomyces ce...