6 documents found, page 1 of 1

Sort by Issue Date

Defective Ru-doped α-MnO2 nanorods enabling efficient hydrazine oxidation for e...

Yu, Zhipeng; Si, Chaowei; Sabaté, Ferran; LaGrow, Alec P.; Tai, Zhixin; Diaconescu, Vlad Martin; Simonelli, Laura; Meng, Lijian; Sabater, Maria J.

Proton exchange membrane water electrolysis (PEMWE) showes substantial advantages over the conventional alkaline water electrolysis (AWE) for power-to-hydrogen (PtH) conversion, given the faster response and wider dynamic current range of the PEMWE technology. However, PEMWE is currently still expensive due partly to the high voltage needed to operate at high current densities and inevitable usage of precious i...


Defective Ru-doped α-MnO2 nanorods enabling efficient hydrazine oxidation for e...

Yu, Zhipeng; Si, Chaowei; Sabaté, Ferran; LaGrow, Alec P.; Tai, Zhixin; Diaconescu, Vlad Martin; Simonelli, Laura; Meng, Lijian; Sabater, Maria J.

Proton exchange membrane water electrolysis (PEMWE) showes substantial advantages over the conventional alkaline water electrolysis (AWE) for power-to-hydrogen (PtH) conversion, given the faster response and wider dynamic current range of the PEMWE technology. However, PEMWE is currently still expensive due partly to the high voltage needed to operate at high current densities and inevitable usage of precious i...


Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocat...

Yu, Zhipeng; Si, Chaowei; LaGrow, Alec P.; Tai, Zhixin; Caliebe, Wolfgang A.; Tayal, Akhil; Sampaio, Maria J.; Sousa, Juliana P. S.; Amorim, Isilda

Diatomic catalysts, particularly those with heteronuclear active sites, have recently attracted considerable attention for their advantages over single-atom catalysts in reactions involving multielectron transfers. Herein, we report bimetallic iridium−iron diatomic catalysts (IrFe−N−C) derived from metal−organic frameworks in a facile wet chemical synthesis followed by postpyrolysis. We use various advanced cha...


Novel Quasi‐Liquid K‐Na Alloy as a Promising Dendrite‐Free Anode for Rechargeab...

Tai, Zhixin; Li, Yi; Liu, Yajie; Zhao, Lanling; Ding, Yu; Lu, Ziyu; Peng, Zhijian; Meng, Lijian; Yu, Guihua; Liu, Lifeng

Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel "quasi-liquid" potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding elect...


Novel Quasi‐Liquid K‐Na Alloy as a Promising Dendrite‐Free Anode for Rechargeab...

Tai, Zhixin; Li, Yi; Liu, Yajie; Zhao, Lanling; Ding, Yu; Lu, Ziyu; Peng, Zhijian; Meng, Lijian; Yu, Guihua; Liu, Lifeng

Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel “quasi-liquid” potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding elect...


Lithium–copper alloy embedded in 3D porous copper foam with enhanced electroche...

Lu, Ziyu; Tai, Zhixin; Yu, Zhipeng; LaGrow, Alec P.; Bondarchuk, Oleksandr; Sousa, Juliana P.S.; Meng, Lijian; Peng, Zhijian; Liu, Lifeng

Suppressing dendrite growth and accommodating volume change, among others, are the main challenges for lithium (Li) metal anode to be used in rechargeable Li batteries. The commercial macroporous copper (Cu) foam current collector may only tackle these challenges to a little extent, and it is usually unable to provide sufficient Li nucleation sites, leading to rapidly increased polarization and unstable cycling...


6 Results

Queried text

Refine Results

Author





















Date




Document Type


Funding



Access rights



Resource


Subject