The blood-brain barrier (BBB) restricts the access of therapeutic agents to the brain, complicating the treatment of neurological diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), glioma, etc. To overcome this limitation and improve drug delivery to the central nervous system (CNS), the potential of nanocarriers, including lipid-based nanosystems, has been explored. ...
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, with a median survival of only 2 to 4 years. Riluzole, a drug commonly used in the management of ALS, has a low aqueous solubility and limited bioavailability. ALS treatment is also hindered by the presence of the blood–brain barrier (BBB) that preserves the delicate homeostasis of the cerebral milieu, isolating it and making brain drug d...
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a survival rate of 3 to 5 years from the onset of symptoms. ALS treatment is compromised by the existence of the blood-brain barrier (BBB), which restricts the access of promising biopharmaceutics to the brain, including riluzole, a drug commonly used to treat ALS. To circumvent the BBB and improve the drug brain targeting, nanosystems such...
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a very poor prognosis. Its treatment is hindered by a lack of new therapeutic alternatives and the existence of the blood–brain barrier (BBB), which restricts the access of drugs commonly used in ALS, such as riluzole, to the brain. To overcome these limitations and increase brain targeting, riluzole-loaded nanostructured lipid carriers (NL...
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with a very poor prognosis. Its treatment is hindered by a lack of new therapeutic alternatives and the existence of the blood–brain barrier (BBB), which restricts the access of drugs commonly used in ALS, such as riluzole, to the brain. To overcome these limitations and increase brain targeting, riluzole-loaded nanostructured lipid carriers (NL...
Neurodegenerative diseases (NDs) bear a lot of weight in public health. By studying the properties of the blood-brain barrier (BBB) and its fundamental interactions with the central nervous system (CNS), it is possible to improve the understanding of the pathological mechanisms behind these disorders and create new and better strategies to improve bioavailability and therapeutic efficiency, such as nanocarriers...