5 documents found, page 1 of 1

Sort by Issue Date

IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methampheta...

Silva, Ana Isabel; Socodato, Renato; Pinto, Carolina; Terceiro, Ana Filipa; Canedo, Teresa; Relvas, João Bettencourt; Saraiva, Margarida

Methamphetamine (Meth) use is known to induce complex neuroinflammatory responses, particularly involving astrocytes and microglia. Building upon our previous research, which demonstrated that Meth stimulates astrocytes to release tumor necrosis factor (TNF) and glutamate, leading to microglial activation, this study investigates the role of the anti-inflammatory cytokine interleukin-10 (IL-10) in this process....


Deciphering the astrocytic and synaptic changes under chronic alcohol exposure ...

Rodrigues, Ana Margarida; Canedo, Teresa; Terceiro, Ana Filipa; Tedim-Moreira, Joana; Silva, Ana Isabel; Magalhães, Ana; Relvas, João

Drug abuse is characterized by a compulsive and persistent drug-seeking behaviour, despite the harmful emotional, physical and social consequences. Our laboratory has previously found that the neuronal-glial crosstalk is critical in relaying the changes caused by acute exposure to psychoactive drugs through neuroimmune mechanisms. We have also reported that microglia can engulf postsynaptic components in the pr...


Neuron–microglia contact-dependent mechanisms attenuate methamphetamine-induced...

Bravo, Joana; Ribeiro, Inês; Terceiro, Ana Filipa; Andrade, Elva B.; Portugal, Camila Cabral; Lopes, Igor M.; Azevedo, Maria M.; Sousa, Mafalda

Exposure to methamphetamine (Meth) has been classically associated with damage to neuronal terminals. However, it is now becoming clear that addiction may also result from the interplay between glial cells and neurons. Recently, we demonstrated that binge Meth administration promotes microgliosis and microglia pro-inflammation via astrocytic glutamate release in a TNF/IP3R2-Ca2+-dependent manner. Here, we inves...


Neuron-microglia contact-dependent mechanisms attenuate methamphetamine-induced...

Bravo, Joana; Ribeiro, Inês Moreira; Terceiro, Ana Filipa; Andrade, Elva B.; Portugal, Camila Cabral; Lopes, Igor M.; Azevedo, Maria M.; Sousa, Mafalda

Exposure to methamphetamine (Meth) has been classically associated with damage to neuronal terminals. However, it is now becoming clear that addiction may also result from the interplay between glial cells and neurons. Recently, we demonstrated that binge Meth administration promotes microgliosis and microglia pro-inflammation via astrocytic glutamate release in a TNF/IP<sub>3</sub>R2-Ca<sup>2+</sup>-dependent ...


Astrocyte-derived TNF and glutamate critically modulate microglia activation by...

Canedo, Teresa; Portugal, Camila Cabral; Socodato, Renato; Almeida, Tiago Oliveira; Terceiro, Ana Filipa; Bravo, Joana; Silva, Ana Isabel

Methamphetamine (Meth) is a powerful illicit psychostimulant, widely used for recreational purposes. Besides disrupting the monoaminergic system and promoting oxidative brain damage, Meth also causes neuroinflammation, contributing to synaptic dysfunction and behavioral deficits. Aberrant activation of microglia, the largest myeloid cell population in the brain, is a common feature in neurological disorders tri...


5 Results

Queried text

Refine Results

Author





















Date





Document Type



Access rights


Resource



Subject