11 documents found, page 1 of 2

Sort by Issue Date

Geometric Semantic Genetic Programming with Normalized and Standardized Random ...

Bakurov, Illya; Muñoz Contreras, José Manuel; Castelli, Mauro; Rodrigues, Nuno Miguel Duarte; Silva, Sara; Trujillo, Leonardo; Vanneschi, Leonardo

Bakurov, I., Muñoz Contreras, J. M., Castelli, M., Rodrigues, N., Silva, S., Trujillo, L., & Vanneschi, L. (2024). Geometric Semantic Genetic Programming with Normalized and Standardized Random Programs. Genetic Programming And Evolvable Machines, 25, 1-29. Article 6. https://doi.org/10.1007/s10710-024-09479-1 --- This work was partially supported by FCT, Portugal, through funding of research units MagIC/NOVA I...


Introduction to the peer commentary special section on “Jaws 30” by W. B. Langdon

Vanneschi, Leonardo; Trujillo, Leonardo

Vanneschi, L., & Trujillo, L. (2023). Introduction to the peer commentary special section on “Jaws 30” by W. B. Langdon. Genetic Programming And Evolvable Machines, 24(2 Special Issue on Highlights of Genetic Programming 2022 Events), 1-2. [18]. https://doi.org/10.1007/s10710-023-09466-y; In 1992, John R. Koza published his first book on Genetic Programming (GP): “Genetic Programming: On the Programming of Comp...


GSGP-CUDA: A CUDA framework for Geometric Semantic Genetic Programming

Trujillo, Leonardo; Muñoz Contreras, Jose Manuel; Hernandez, Daniel E.; Castelli, Mauro; Tapia, Juan J.

Trujillo, L., Muñoz Contreras, J. M., Hernandez, D. E., Castelli, M., & Tapia, J. J. (2022). GSGP-CUDA — A CUDA framework for Geometric Semantic Genetic Programming. SoftwareX, 18, 1-7. [101085]. https://doi.org/10.1016/j.softx.2022.101085 -------------------------------Funding Information: We thank Perla Juárez-Smith for her help implementing some of the source code used in this software. We also thank the Tec...


Using Neuroevolution to Design Neural Networks [special issue]

Castelli, Mauro; Medvet, Eric; Trujillo, Leonardo; Manzoni, Luca

Castelli, M. (Guest ed.), Medvet, E. (Guest ed.), Trujillo, L., & Manzoni, L. (Guest ed.) (2020). Using Neuroevolution to Design Neural Networks. Computational Intelligence And Neuroscience, 2020.; Deep learning (DL) has gained popularity in the field of machine learning, with DL-based models nowadays used to address complex problems across many different domains. In DL, the training process of a neural network...


Is k Nearest Neighbours Regression Better Than GP?

Vanneschi, Leonardo; Castelli, Mauro; Manzoni, Luca; Silva, Sara; Trujillo, Leonardo

Vanneschi, L., Castelli, M., Manzoni, L., Silva, S., & Trujillo, L. (2020). Is k Nearest Neighbours Regression Better Than GP? In T. Hu, N. Lourenço, E. Medvet, & F. Divina (Eds.), Genetic Programming - 23rd European Conference, EuroGP 2020, Held as Part of EvoStar 2020, Proceedings (pp. 244-261). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes ...


Unlabeled multi-target regression with genetic programming

Lopez, Uriel; Trujillo, Leonardo; Silva, Sara; Vanneschi, Leonardo; Legrand, Pierrick

Lopez, U., Trujillo, L., Silva, S., Vanneschi, L., & Legrand, P. (2020). Unlabeled multi-target regression with genetic programming. In GECCO 2020: Proceedings of the 2020 Genetic and Evolutionary Computation Conference (pp. 976-984). (GECCO 2020 - Proceedings of the 2020 Genetic and Evolutionary Computation Conference). Association for Computing Machinery. https://doi.org/10.1145/3377930.3389846; Machine Learn...


Evolving multidimensional transformations for symbolic regression with M3GP

Muñoz, Luis; Trujillo, Leonardo; Silva, Sara; Castelli, Mauro; Vanneschi, Leonardo

Muñoz, L., Trujillo, L., Silva, S., Castelli, M., & Vanneschi, L. (2019). Evolving multidimensional transformations for symbolic regression with M3GP. Memetic computing, 11(2), 111–126. https://doi.org/10.1007/s12293-018-0274-5; Multidimensional Multiclass Genetic Programming with Multidimensional Populations (M3GP) was originally proposed as a wrapper approach for supervised classification. M3GP searches for t...


Alignment-based genetic programming for real life applications

Vanneschi, Leonardo; Castelli, Mauro; Scott, Kristen; Trujillo, Leonardo

Vanneschi, L., Castelli, M., Scott, K., & Trujillo, L. (2019). Alignment-based genetic programming for real life applications. Swarm and Evolutionary Computation, 44(February), 840-851. DOI: 10.1016/j.swevo.2018.09.006; A recent discovery has attracted the attention of many researchers in the field of genetic programming: given individuals with particular characteristics of alignment in the error space, called ...


Local Search is Underused in Genetic Programming

Trujillo, Leonardo; Z-Flores, Emigdio; Juárez-Smith, Perla S.; Legrand, Pierrick; Silva, Sara; Castelli, Mauro; Vanneschi, Leonardo; Schütze, Oliver

Trujillo, L., Z-Flores, E., Juárez-Smith, P. S., Legrand, P., Silva, S., Castelli, M., ... Muñoz, L. (2018). Local Search is Underused in Genetic Programming. In R. Riolo, B. Worzel, B. Goldman, & B. Tozier (Eds.), Genetic Programming Theory and Practice XIV (pp. 119-137). [8] (Genetic and Evolutionary Computation). Springer. https://doi.org/10.1007/978-3-319-97088-2_8; There are two important limitations of st...


A scalable genetic programming approach to integrate miRNA-target predictions

Beretta, Stefano; Castelli, Mauro; Muñoz, Luis; Trujillo, Leonardo; Martínez, Yuliana; Popovič, Aleš; Milanesi, Luciano; Merelli, Ivan

Beretta, S., Castelli, M., Munoz, L., Trujillo, L., Martinez, Y., Popovic, A., ... Merelli, I. (2018). A Scalable Genetic Programming Approach to Integrate miRNA-Target Predictions: Comparing Different Parallel Implementations of M3GP. Complexity, [4963139]. DOI: 10.1155/2018/4963139; There are many molecular biology approaches to the analysis of microRNA (miRNA) and target interactions, but the experiments are...


11 Results

Queried text

Refine Results

Author





















More optionsLess options

Date








More optionsLess options

Document Type





Funding



Access rights


Resource


Subject





















More optionsLess options