How plants respond physiologically to leaf warming and low water availability may determine how they will perform under future climate change. In 2015 – 2016, an unprecedented drought occurred across Amazonia with record-breaking high temperatures and low soil moisture, offering a unique opportunity to evaluate the performances of Amazonian trees to a severe climatic event. We quantified the responses of leaf w...
Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red ...
Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on ...
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such “monodominant” forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric ...
The formation of spatial genetic structure (SGS) may originate from different patterns of seed deposition in the landscape, and is mostly determined by seed dispersal limitation. After dispersal, mechanisms such as filtering by environmental factors or attack by herbivores/pathogens throughout plant development stages, and potentially either disrupt or intensify SGS patterns. We investigated how the genotype of...
Species delimitation remains a challenge worldwide, but especially in biodiversity hotspots such as the Amazon. Here, we use an integrative taxonomic approach that combines data from morphology, phylogenomics, and leaf spectroscopy to clarify the species limits within the Protium heptaphyllum species complex, which includes subsp. cordatum, subsp. heptaphyllum, and subsp. ulei. Molecular phylogeny indicates tha...
Species complexes are common in the Neotropical flora, and the Pagamea guianensis complex is one of the most widespread groups of species in the Amazonian white-sand flora. Previous analyses suggested the occurrence of ten species in this group, but species limits remained unclear due to poor sampling, morphological overlap and low molecular variation. Here we present the most comprehensive population and molec...