Encontrado 1 documento, a visualizar página 1 de 1

Ordenado por Data

Mitigating false negatives in imbalanced datasets: an ensemble approach

Cavique, Luís; Vasconcelos, Marcelo

Imbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimi...


1 Resultados

Texto Pesquisado

Refinar resultados

Autor



Data


Tipo de Documento


Tipo de acesso


Recurso


Assunto