In nature, the simultaneous occurrence of multiple emergent contaminants such as cyanotoxins (e.g., cylindrospermopsin (CYN)) and herbicides (e.g., glyphosate (GLY)), is highly expectable and it can be anticipated, mainly in the aquatic and terrestrial environments. The use of contaminated water for irrigation can be hazardous to the agricultural sector and some studies have reported that, individually, these c...
Natural toxins produced by freshwater cyanobacteria, such as cylindrospermopsin (CYN), have been regarded as an emergent environmental threat. Cyanotoxins can be applied directly to soil by using contaminated water for agricultural irrigation. Despite the risks for food safety, the impact of cyanotoxins in agriculture is not yet fully understood. Furthermore, in soil-plant system the simultaneous occurrence of ...
Cyanobacteria blooms occur frequently in freshwaters around the world. Some can produce and release toxic compounds called cyanotoxins, which represent a danger to both the environment and human health. Microcystin-LR (MC-LR) is the most toxic variant reported all over the world. Conventional water treatment methods are expensive and require specialized personnel and equipment. Recently, a multi-soil-layering (...
Frequent toxic cyanoblooms in eutrophic freshwaters produce various cyanotoxins such as the monocyclic heptapeptides microcystins (MCs), known as deleterious compounds to plant growth and human health. Recently, MCs are a recurrent worldwide sanitary problem in irrigation waters and farmland soils due to their transfer and accumulation in the edible tissues of vegetable produce. In such cases, studies about the...
The development of alternative ecological and effective antifouling technologies is still challenging. Synthesis of nature-inspired compounds has been exploited, given the potential to assure commercial supplies of potential ecofriendly antifouling agents. In this direction, the antifouling activity of a series of nineteen synthetic small molecules, with chemical similarities with natural products, were exploit...
The undesired attachment of micro and macroorganisms on water-immersed surfaces, known as marine biofouling, results in severe prevention and maintenance costs (billions €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructures. To date, there are no sustainable, cost-effective and environmentally safe solutions to address this challenging phenomenon. Therefore, w...
The McMurdo Dry Valleys constitute the largest ice‐free region of Antarctica and one of the most extreme deserts on Earth. Despite the low temperatures, dry and poor soils and katabatic winds, some microbes are able to take advantage of endolithic microenvironments, inhabiting the pore spaces of soil and constituting photosynthesis‐based communities. We isolated a green microalga, Endolithella mcmurdoensis gen....
Marine biofouling represents a global economic and ecological challenge and few eco-friendly antifouling agents are available. The aim of this work was to establish the proof of concept that a recently synthesized nature-inspired compound (gallic acid persulfate, GAP) can act as an eco-friendly and effective antifoulant when immobilized in coatings through a non-release strategy, promoting a long-lasting antifo...
Cyanobacteria have the potential to become an industrially sustainable source of functional biopolymers. Their exopolysaccharides (EPS) harbor chemical complexity, which predicts bioactive potential. Although some are reported to excrete conspicuous amounts of polysaccharides, others are still to be discovered. The production of this strain-specific trait can promote carbon neutrality while its intrinsic locati...