The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to humans. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers, some chemically induced DNA adducts. Depending on the specimen type, there ar...
The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there ...
For safety assessment of nanomaterials (NMs), in vitro genotoxicity data based on welldesigned experiments is required. Metal-based NMs are amongst the most used in consumer products. In this chapter, we report results for three metal-based NMs, titanium dioxide (NM- 100), cerium dioxide (NM-212) and silver (NM-302) in V79 cells, using a set of in vitro genotoxicity assays covering different endpoints: the medi...