Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel "quasi-liquid" potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding elect...
Rechargeable potassium metal batteries are promising energy storage devices with potentially high energy density and markedly low cost. However, eliminating dendrite growth and achieving a stable electrode/electrolyte interface are the key challenges to tackle. Herein, a novel “quasi-liquid” potassium-sodium alloy (KNA) anode comprising only 3.5 wt% sodium (KNA-3.5) is reported, which exhibits outstanding elect...