Detalhes do Documento

Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts

Autor(es): Vigia, E ; Ramalhete, L ; Barros, I ; Chumbinho, B ; Filipe, E ; Pena, A ; Bicho, L ; Nobre, A ; Carrelha, S ; Corado, S ; Sobral, M ; Lamelas, J ; Santos Coelho, J ; Pinto Marques, H ; Pico, P ; Costa, S ; Rodrigues, F ; Bigotte Vieira, M ; Magriço, R ; Cotovio, P ; Caeiro, F ; Aires, I ; Silva, C ; Remédio, F ; Martins, A ; Ferreira, A ; Paulino, J ; Nolasco, F ; Ribeiro, R

Data: 2022

Identificador Persistente: http://hdl.handle.net/10400.17/4632

Origem: Repositório do Centro Hospitalar de Lisboa Central, EPE

Assunto(s): Pancreas Transplantation; Graft Rejection; Graft Survival; HCC CHBPT


Descrição

The impact of delayed graft function on outcomes following various solid organ transplants is well documented and addressed in the literature. Delayed graft function following various solid organ transplants is associated with both short- and long-term graft survival issues. In a retrospective cohort study including 106 patients we evaluated whether pancreas graft survival differs according to moment of insulin therapy following simultaneous pancreaskidney transplant. As a result, we aimed to identify possible risk factors and build a machine-learning-based model that predicts the likelihood of dysfunction following SPK transplant patients based on day zero data after transplant, allowing to enhance pancreatic graft survival. Feature selection by Relief algorithm yielded donor features, age, cause of death, hemoglobin, gender, ventilation days, days in ICU, length of cardiac respiratory arrest and recipient features, gender, long-term insulin, dialysis type, time of diabetes mellitus, vPRA pre-Tx, number of HLA-A mismatches and PRDI, all contributed to the models' strength.

Tipo de Documento Artigo científico
Idioma Inglês
Contribuidor(es) Repositório da Unidade Local de Saúde São José
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.