Detalhes do Documento

Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks

Autor(es): Pereira, Maria Elias ; Deuermeier, Jonas ; Freitas, Pedro ; Barquinha, Pedro ; Zhang, Weidong ; Martins, Rodrigo ; Fortunato, Elvira ; Kiazadeh, Asal

Data: 2022

Identificador Persistente: http://hdl.handle.net/10362/134350

Origem: Repositório Institucional da UNL

Projeto/bolsa: info:eu-repo/grantAgreement/EC/H2020/716510/EU; info:eu-repo/grantAgreement/EC/H2020/787410/EU; info:eu-repo/grantAgreement/EC/H2020/952169/EU; info:eu-repo/grantAgreement/EC/H2020/101008701/EU;

Assunto(s): Materials Science(all); Engineering(all)


Descrição

UIDB/50025/2020-202 DFA/BD/8335/2020 No. PTDC/NAN-MAT/30812/2017 Grant Nos. EP/M006727/1 EP/S000259/1

Neuromorphic computation based on resistive switching devices represents a relevant hardware alternative for artificial deep neural networks. For the highest accuracies on pattern recognition tasks, an analog, linear, and symmetric synaptic weight is essential. Moreover, the resistive switching devices should be integrated with the supporting electronics, such as thin-film transistors (TFTs), to solve crosstalk issues on the crossbar arrays. Here, an a-Indium-gallium-zinc-oxide (IGZO) memristor is proposed, with Mo and Ti/Mo as bottom and top contacts, with forming-free analog switching ability for an upcoming integration on crossbar arrays with a-IGZO TFTs for neuromorphic hardware systems. The development of a TFT compatible fabrication process is accomplished, which results in an a-IGZO memristor with a high stability and low cycle-to-cycle variability. The synaptic behavior through potentiation and depression tests using an identical spiking scheme is presented, and the modulation of the plasticity characteristics by applying non-identical spiking schemes is also demonstrated. The pattern recognition accuracy, using MNIST handwritten digits dataset, reveals a maximum of 91.82% accuracy, which is a promising result for crossbar implementation. The results displayed here reveal the potential of Mo/a-IGZO/Ti/Mo memristors for neuromorphic hardware.

Tipo de Documento Artigo científico
Idioma Inglês
Contribuidor(es) DCM - Departamento de Ciência dos Materiais; CENIMAT-i3N - Centro de Investigação de Materiais (Lab. Associado I3N); UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias; RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados