Detalhes do Documento

Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus

Autor(es): Schäper, Simon ; Brito, António D. ; Saraiva, Bruno M. ; Squyres, Georgia R. ; Holmes, Matthew J. ; Garner, Ethan C. ; Hensel, Zach ; Henriques, Ricardo ; Pinho, Mariana G.

Data: 2024

Identificador Persistente: http://hdl.handle.net/10362/172688

Origem: Repositório Institucional da UNL

Assunto(s): Microbiology; Immunology; Applied Microbiology and Biotechnology; Genetics; Microbiology (medical); Cell Biology


Descrição

Funding Information: We thank members of the Pinho lab, P. Pereira (ITQB-NOVA), S. Filipe (FCT-NOVA) and J. Xiao (Johns Hopkins University) for helpful discussions; L. Lavis (Janelia Research Campus, Ashburn) for the generous gift of JF549-HTL, JF549-cpSTL and JFX650-STL; E. Harry (University of Technology, Sydney) for providing the anti-FtsZ antibody; T. Roemer (Merck) for providing DMPI; M. S. VanNieuwenhze (Indiana University) for providing HADA; and the Electron Microscopy Facility and Genomics Unit of Instituto Gulbenkian de Ciência. This study was funded by the European Research Council (ERC) through grant ERC-2017-CoG-771709 (to M.G.P.), by Fundação para a Ciência e a Tecnologia (FCT) through MOSTMICRO-ITQB R and D Unit (UIDB/04612/2020, UIDP/04612/2020 to ITQB-NOVA) and LS4FUTURE Associated Laboratory (LA/P/0087/2020 to ITQB-NOVA); by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 839596 (to S.S.), by the European Molecular Biology Organization (EMBO) through award ALTF 673-2018 (to S.S.), by The Company of Biologists Ltd. (Journal of Cell Science) under the travelling fellowship agreement JCSTF1911323 (to S.S.), and by FCT through contract 2022.03033.CEECIND (to S.S.). R.H.’s contributions were supported by the Gulbenkian Foundation, the ERC (grant agreement no. 101001332) and the EMBO installation grant (EMBO-2020-IG-4734). Extended Data Figure was created with Biorender.com . Publisher Copyright: © The Author(s) 2024.

Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.

Tipo de Documento Artigo científico
Idioma Inglês
Contribuidor(es) Instituto de Tecnologia Química e Biológica António Xavier (ITQB); RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.