Autor(es):
SNO+ Collaboration ; Andringa, S. ; Arushanova, E. ; Asahi, S. ; Askins, M. ; Auty, D. J. ; Back, A. R. ; Barnard, Z. ; Barros, N. ; Beier, E. W. ; Bialek, A. ; Biller, S. D. ; Blucher, E. ; Bonventre, R. ; Braid, D. ; Caden, E. ; Callaghan, E. ; Caravaca, J. ; Carvalho, J. ; Cavalli, L. ; Chauhan, D. ; Chen, M. ; Chkvorets, O. ; Clark, K. ; Cleveland, B. ; Coulter, I. T. ; Cressy, D. ; Dai, X. ; Darrach, C. ; Davis-Purcell, B. ; Deen, R. ; Depatie, M. M. ; Descamps, F. ; Di Lodovico, F. ; Duhaime, N. ; Duncan, F. ; Dunger, J. ; Falk, E. ; Fatemighomi, N. ; Ford, R. ; Gorel, P. ; Grant, C. ; Grullon, S. ; Guillian, E. ; Hallin, A. L. ; Hallman, D. ; Hans, S. ; Hartnell, J. ; Harvey, P. ; Hedayatipour, M. ; Heintzelman, W. J. ; Helmer, R. L. ; Hreljac, B. ; Hu, J. ; Iida, T. ; Jackson, C. M. ; Jelley, N. A. ; Jillings, C. ; Jones, C. ; Jones, P. G. ; Kamdin, K. ; Kaptanoglu, T. ; Kaspar, J. ; Keener, P. ; Khaghani, P. ; Kippenbrock, L. ; Klein, J. R. ; Knapik, R. ; Kofron, J. N. ; Kormos, L. L. ; Korte, S. ; Kraus, C. ; Krauss, C. B. ; Labe, K. ; Lam, I. ; Lan, C. ; Land, B. J. ; Langrock, S. ; LaTorre, A. ; Lawson, I. ; Lefeuvre, G. M. ; Leming, E. J. ; Lidgard, J. ; Liu, X. ; Liu, Y. ; Lozza, V. ; Maguire, S. ; Maio, A. ; Majumdar, K. ; Manecki, S. ; Maneira, J. ; Marzec, E. ; Mastbaum, A. ; McCauley, N. ; McDonald, A. B. ; McMillan, J. E. ; Mekarski, P. ; Miller, C. ; Mohan, Y. ; Mony, E. ; Mottram, M. J. ; Novikov, V. ; O'Keeffe, H. M. ; O'Sullivan, E. ; Orebi Gann, G. D. ; Parnell, M. J. ; Peeters, S. J. M. ; Pershing, T. ; Petriw, Z. ; Prior, G. ; Prouty, J. C. ; Quirk, S. ; Reichold, A. ; Robertson, A. ; Rose, J. ; Rosero, R. ; Rost, P. M. ; Rumleskie, J. ; Schumaker, M. A. ; Schwendener, M. H. ; Scislowski, D. ; Secrest, J. ; Seddighin, M. ; Segui, L. ; Seibert, S. ; Shantz, T. ; Shokair, T. M. ; Sibley, L. ; Sinclair, J. R. ; Singh, K. ; Skensved, P. ; S oerensen, A. ; Sonley, T. ; Stainforth, R. ; Strait, M. ; Stringer, M. I. ; Svoboda, R. ; Tatar, J. ; Tian, L. ; Tolich, N. ; Tseng, J. ; Tseung, H. W. C. ; Van Berg, R. ; Vázquez-Jáuregui, E. ; Virtue, C. ; von Krosigk, B. ; Walker, J. M. G. ; Walker, M. ; Wasalski, O. ; Waterfield, J. ; White, R. F. ; Wilson, J. R. ; Winchester, T. J. ; Wright, A. ; Yeh, M. ; Zhao, T. ; Zuber, K.
Data: 2015
Identificador Persistente: https://hdl.handle.net/10316/108414
Origem: Estudo Geral - Universidade de Coimbra
Assunto(s): Physics - Instrumentation and Detectors; High Energy Physics - Experiment
Descrição
Published in "Neutrino Masses and Oscillations" of Advances in High Energy Physics (Hindawi)
SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$\nu\beta\beta$) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55-133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low-energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0$\nu\beta\beta$ Phase I is foreseen for 2017.
Capital construction funds for the SNO+ experiment are provided by the Canada Foundation for Innovation (CFI). This work has been in part supported by the Science and Technology FacilitiesCouncil (STFC) of theUnitedKingdom (Grants nos. ST/J001007/1 and ST/K001329/1), the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research (CIFAR), the National Science Foundation, national funds from Portugal and European Union FEDER funds through the COMPETE program, through FCT, Fundac¸˜ao para a Ciˆencia e a Tecnologia (Grant no. EXPL/FIS-NUC/1557/2013), the Deutsche Forschungsgemeinschaft (Grant no. ZU123/5), the European Union’s Seventh Framework Programme (FP7/2007-2013, under the European Research Council (ERC) Grant Agreement no. 278310 and the Marie Curie Grant Agreement no. PIEF-GA-2009-253701), the Director, Office of Science, of the U.S. Department of Energy (Contract no. DE-AC02- 05CH11231), the U.S. Department of Energy, Office of Science, Office of Nuclear Physics (Award no. DE-SC0010407), the U.S. Department of Energy (Contract no. DE-AC02- 98CH10886), the National Science Foundation (Grant no. NSF-PHY-1242509), and the University of California, Berkeley. The authors acknowledge the generous support of the Vale and SNOLAB staff.