Document details

Review of Piezoelectrical Materials Potentially Useful for Peripheral Nerve Repair

Author(s): Casal, D ; Casimiro, MH ; Ferreira, L ; Leal, JP ; Rodrigues, G ; Lopes, R ; Lino Moura, D ; Gonçalves, L ; Lago, J ; Pais, D ; Santos, P

Date: 2023

Persistent ID: http://hdl.handle.net/10400.17/4777

Origin: Repositório do Centro Hospitalar de Lisboa Central, EPE

Subject(s): HSJ CPR; MAC GIN; 3D Printing; Biodegradables; Biomedical Devices; Electroactive Scaffolds; Electrospinning; Peripheral Nerve; Piezoelectric Polymers; Piezostimulation; Repair; Surgery


Description

It has increasingly been recognized that electrical currents play a pivotal role in cell migration and tissue repair, in a process named "galvanotaxis". In this review, we summarize the current evidence supporting the potential benefits of electric stimulation (ES) in the physiology of peripheral nerve repair (PNR). Moreover, we discuss the potential of piezoelectric materials in this context. The use of these materials has deserved great attention, as the movement of the body or of the external environment can be used to power internally the electrical properties of devices used for providing ES or acting as sensory receptors in artificial skin (e-skin). The fact that organic materials sustain spontaneous degradation inside the body means their piezoelectric effect is limited in duration. In the case of PNR, this is not necessarily problematic, as ES is only required during the regeneration period. Arguably, piezoelectric materials have the potential to revolutionize PNR with new biomedical devices that range from scaffolds and nerve-guiding conduits to sensory or efferent components of e-skin. However, much remains to be learned regarding piezoelectric materials, their use in manufacturing of biomedical devices, and their sterilization process, to fine-tune their safe, effective, and predictable in vivo application.

Document Type Journal article
Language English
Contributor(s) Repositório da Unidade Local de Saúde São José
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents