Document details

Effect of the Combined Treatments with LC2017 and Trichoderma atroviride Strain I-1237 on Disease Development and Defense Responses in Vines Infected by Lasiodiplodia theobromae

Author(s): Reis, Pedro ; Mondello, Vincenzo ; Diniz, Inês ; Alves, Artur ; Rego, Cecília ; Fontaine, Florence

Date: 2022

Persistent ID: http://hdl.handle.net/10400.5/24333

Origin: Repositório da Universidade de Lisboa

Subject(s): Botryosphaeria dieback; internal necrosis length; gene expression; cuttings; Touriga Nacional; Cabernet Sauvignon; sustainable control


Description

Grapevine trunk diseases constitute one of the major problems for viticulture worldwide, with Botryosphaeria dieback considered as one of the most important of these diseases. In this work, we aimed to (i) evaluate the effect of the combination of two products, Esquive® (a Trichoderma-based product) and LC2017 (a low-copper-based product), in the control of Lasiodiplodia theobromae, by evaluating the internal lesion length caused by inoculation of this pathogen on greenhouse kept grapevines of cvs Cabernet Sauvignon and Touriga Nacional and, (ii) investigating their elicitor effect on plant defense responses, through the analysis of the expression of a set of genes. The pathogen was always re-isolated from the infected tissues and was able to cause wood discoloration. Touriga Nacional exhibited longer lesions than Cabernet Sauvignon, and the application of both products did not appear to reduce lesion length when compared to LC2017 applied alone. The elicitor effect of LC2017 on plant defense was confirmed by gene expression analysis, and no significant differences were found between plants treated with LC2017 and with both products. Moreover, a specific response related to the cultivar was verified, but this apparently unique interaction between product, cultivar and pathogen remains to be further investigated

Document Type Journal article
Language English
Contributor(s) Repositório Científico de Acesso Aberto da ULisboa
CC Licence
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents