Document details

Synthesis, stability and in vitro dermal evaluation of aminocarbonyloxymethyl esters as prodrugs of carboxylic acid agents

Author(s): Mendes, E ; Furtado, T ; Neres, J ; Iley, J ; Jarvinen, T ; Rautio, J ; Moreira, R

Date: 2002

Persistent ID: http://hdl.handle.net/10451/21510

Origin: Repositório da Universidade de Lisboa

Subject(s): Biochemistry & Molecular Biology; Chemistry, Medicinal; Chemistry, Organic


Description

Aminocarbonyloxymethyl esters 3 based on (S)-amino acid carriers were synthesised and evaluated as potential prodrugs of carboxylic acid agents. In addition, the compounds were evaluated as topical prodrugs with the aim of improving the dermal delivery of two non-steroidal anti-inflammatory agents: naproxen and flufenamic acid. The lipophilicities of these compounds were determined and their hydrolyses in aqueous solutions and in human plasma were examined. Compounds 3 containing a secondary carbamate group were hydrolysed at pH 7.4 by two different routes: (i) direct nucleophilic attack at the ester carbonyl carbon leading to the release of the parent carboxylic acid and (ii) intramolecular rearrangement involving an O--N acyl migration, leading to the formation of the corresponding amide. The rearrangement pathway is highly dependent on the size of the carboxylic acid and amino acid substituents, being eliminated when the amino acid is valine or leucine. In contrast, compounds 3 decomposed in plasma exclusively through ester hydrolysis, most releasing the parent carboxylic acid quantitatively with half-lives shorter than 5 min. The permeation of selected prodrugs across excised postmortem human skin was studied in vitro. All prodrugs evaluated exhibited a lower flux than the corresponding parent carboxylic acid. The poor skin permeation observed for compounds 3 is most probably due to their low aqueous solubility and high partition coefficient. (C) 2002 Elsevier Science Ltd. All rights reserved.

Document Type Journal article
Language English
Contributor(s) Repositório Científico de Acesso Aberto da ULisboa
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents