Author(s):
Goncalves, S. Beatriz ; Palha, José Marinho Cruz ; Fernandes, Helena C. ; Souto, Márcio R. ; Pimenta, Sara ; Dong, Tao ; Yang, Zhaochu ; Ribeiro, J. F. ; Correia, J. H.
Date: 2018
Persistent ID: https://hdl.handle.net/1822/60331
Origin: RepositóriUM - Universidade do Minho
Subject(s): silicon neural probes; LED chip; thermoresistance; temperature monitoring; optogenetics
Description
In optogenetic studies, the brain is exposed to high-power light sources and inadequate power density or exposure time can cause cell damage from overheating (typically temperature increasing of 2 ∘ C). In order to overcome overheating issues in optogenetics, this paper presents a neural tool capable of assessing tissue temperature over time, combined with the capability of electrical recording and optical stimulation. A silicon-based 8 mm long probe was manufactured to reach deep neural structures. The final proof-of-concept device comprises a double-sided function: on one side, an optrode with LED-based stimulation and platinum (Pt) recording points; and, on the opposite side, a Pt-based thin-film thermoresistance (RTD) for temperature assessing in the photostimulation site surroundings. Pt thin-films for tissue interface were chosen due to its biocompatibility and thermal linearity. A single-shaft probe is demonstrated for integration in a 3D probe array. A 3D probe array will reduce the distance between the thermal sensor and the heating source. Results show good recording and optical features, with average impedance magnitude of 371 k Ω , at 1 kHz, and optical power of 1.2 mW·mm −2 (at 470 nm), respectively. The manufactured RTD showed resolution of 0.2 ∘ C at 37 ∘ C (normal body temperature). Overall, the results show a device capable of meeting the requirements of a neural interface for recording/stimulating of neural activity and monitoring temperature profile of the photostimulation site surroundings, which suggests a promising tool for neuroscience research filed.