Autor(es):
Castro, Vânia Isabel Baptista ; Araújo, Ana Rita Rodrigues ; Duarte, Filipa ; Sousa-Franco, António ; Reis, R. L. ; Pashkuleva, I. ; Pires, R. A.
Data: 2023
Identificador Persistente: https://hdl.handle.net/1822/85090
Origem: RepositóriUM - Universidade do Minho
Assunto(s): Glycopeptide; Plycopeptide; Neural tissue; Stem cells differentiation; Supramolecular; Hydrogels; stem cell differentiation
Descrição
We applied a bottom-up approach to develop biofunctional supramolecular hydrogels from an aromatic glycodipeptide. The self-assembly of the glycopeptide was induced by either temperature manipulation (heatingâ cooling cycle) or solvent (DMSO to water) switch. The solâ gel transition was salt-triggered in cell culture media and resulted in gels with the same chemical compositions but different mechanical properties. Human adipose derived stem cells (hASCs) cultured on these gels under basal conditions (i.e., without differentiation factors) overexpressed neural markers, such as GFAP, Nestin, MAP2, and βIII-tubulin, confirming the differentiation into neural lineages. The mechanical properties of the gels influenced the number and distribution of the adhered cells. A comparison with gels obtained from the nonglycosylated peptide showed that glycosylation is crucial for the biofunctionality of the hydrogels by capturing and preserving essential growth factors...