Detalhes do Documento

Antibody selection strategies and their impact in predicting clinical malaria based on multi-sera data

Autor(es): Fonseca, André ; Spytek, Mikolaj ; Biecek, Przemysław ; Cordeiro, Clara ; Sepúlveda, Nuno

Data: 2024

Identificador Persistente: http://hdl.handle.net/10400.1/20396

Origem: Sapientia - Universidade do Algarve

Assunto(s): Multivariate serological data; Super learner; Statistical modelling; Malaria outcome prediction; Random forest


Descrição

Nowadays, the chance of discovering the best antibody candidates for predicting clinical malaria has notably increased due to the availability of multi-sera data. The analysis of these data is typically divided into a feature selection phase followed by a predictive one where several models are constructed for predicting the outcome of interest. A key question in the analysis is to determine which antibodies should be included in the predictive stage and whether they should be included in the original or a transformed scale (i.e. binary/dichotomized).

Tipo de Documento Artigo científico
Idioma Inglês
Contribuidor(es) Sapientia
Licença CC
facebook logo  linkedin logo  twitter logo 
mendeley logo

Documentos Relacionados

Não existem documentos relacionados.