Document details

The effect of silicon on the antioxidant system of tomato seedlings exposed to individual and combined nitrogen and water deficit

Author(s): Machado, Joana ; Fernandes, Ana Patricia G. ; Bokor, Boris ; Vaculík, Marek ; Heuvelink, Ep ; Carvalho, Susana M. P. ; Vasconcelos, Marta W.

Date: 2024

Persistent ID: http://hdl.handle.net/10400.14/41967

Origin: Veritati - Repositório Institucional da Universidade Católica Portuguesa

Subject(s): Abiotic stress; Antioxidant system; cv Micro-Tom; Phenolics; Plant growth; Silicon


Description

Exploring sustainable strategies for improving crop water and nitrogen use efficiency is essential. Silicon (Si) has been reported as a beneficial metalloid for plants since it alleviates several abiotic stresses (including drought) by triggering the plants´ antioxidant system. However, its role in mitigating the negative impact of nitrogen (N) deficit alone or when combined with water (W) deficit is not well studied. This study applied 0 or 2 mM of Na₂SiO to 3-week-old tomato cv. Micro-Tom seedlings that were grown under the following conditions: control (CTR; 100%N+100% Field Capacity), N deficit (N; 50% N + 100% Field Capacity), water deficit (W; 100% N + 50% Field Capacity) or combined stress (N+W; 50% N + 50% Field Capacity. The Si effect on tomato plant growth depended on the type of stress. Si could only alleviate stress caused by N+W deficit resulting in a higher root dry weight (by 28%), total dry weight (by 23%) and root length (by 37%). Alongside this, there was an increase in the antioxidant (AOX) system activity with the root activity of the studied AOX enzymes APX and CAT being enhanced by 48% and by 263%, respectively. Si application also enhanced AOX enzyme activity when tomato plants were subjected to individual deficits but to a lesser extent. In conclusion, Si-treated tomato plants could efficiently modulate their AOX networks in a situation of combined N and water limitation, thus mitigating some of the adverse effects of this combined stress.

Document Type Journal article
Language English
Contributor(s) Veritati
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents

No related documents