Document details

Cell fate potentials and switching kinetics uncovered in a classic bistable genetic switch

Author(s): Fang, Xiaona ; Liu, Qiong ; Bohrer, Christopher ; Hensel, Zach ; Han, Wei ; Wang, Jin ; Xiao, Jie

Date: 2018

Origin: Repositório Institucional da UNL

Subject(s): Chemistry(all); Biochemistry, Genetics and Molecular Biology(all); Physics and Astronomy(all)


Description

Bistable switches are common gene regulatory motifs directing two mutually exclusive cell fates. Theoretical studies suggest that bistable switches are sufficient to encode more than two cell fates without rewiring the circuitry due to the non-equilibrium, heterogeneous cellular environment. However, such a scenario has not been experimentally observed. Here by developing a new, dual single-molecule gene-expression reporting system, we find that for the two mutually repressing transcription factors CI and Cro in the classic bistable bacteriophage λ switch, there exist two new production states, in which neither CI nor Cro is produced, or both CI and Cro are produced. We construct the corresponding potential landscape and map the transition kinetics among the four production states. These findings uncover cell fate potentials beyond the classical picture of bistable switches, and open a new window to explore the genetic and environmental origins of the cell fate decision-making process in gene regulatory networks.

Document Type Journal article
Language English
Contributor(s) Molecular, Structural and Cellular Microbiology (MOSTMICRO); Instituto de Tecnologia Química e Biológica António Xavier (ITQB); RUN
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents