Document details

Targeting lysosomes in colorectal cancer: exploring the anticancer activity of a New Benzo[a]phenoxazine derivative

Author(s): Ferreira, João C. C. ; Granja, Sara ; Almeida, Ana F. ; Baltazar, Fátima ; Gonçalves, M. Sameiro T. ; Preto, Ana ; Sousa, Maria João

Date: 2023

Persistent ID: http://hdl.handle.net/10400.22/22537

Origin: Repositório Científico do Instituto Politécnico do Porto

Subject(s): Nile Blue analogue; Benzo[a]phenoxazine; Anticancer drug; Colorectal cancer; Lysosome membrane permeabilization


Description

Colorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interest ing agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.

Document Type Journal article
Language English
Contributor(s) Repositório Científico do Instituto Politécnico do Porto
CC Licence
facebook logo  linkedin logo  twitter logo 
mendeley logo

Related documents